A WiFi and Bluetooth Low-Energy Backscatter Combo Chip With Beam Steering Capabilities
A WiFi and Bluetooth Low-Energy Backscatter Combo Chip With Beam Steering Capabilities
Blog Article
This article introduces a dual-mode backscatter integrated circuit that supports both WiFi and Bluetooth low-energy (BLE) transmissions.It enables a multiantenna WiFi mode with reconfigurable beam steering of single-sideband (SSB) quadrature phase shift-keying (QPSK) signals, while also facilitating omnidirectional SSB BLE-to-BLE 5x4 tattoo backscatter communication.To achieve beam steering, two techniques are proposed: 1) a transmission-line-less fully reflective SP4T backscatter switch is employed to minimize power loss and maximize the communication range and 2) a multiantenna array is constructed using the aforementioned SP4T switches together with a baseband phase-shifting technique to reradiate the incident WiFi signal with a controllable angle of direction.The chip implementation is based on a 65-nm CMOS process and operates at a power consumption of $5.
5 mu ext{W}$ in standby mode.In backscattering mode, it consumes $39 mu ext{W}$ for the single-antenna approach and $88 mu ext{W}$ for the multiantenna approach.The proposed design achieves fr6122 a worst-case access point (AP)-to-AP range of 35 and 56 m for the single-antenna and multiantenna approaches, respectively.